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LETTER TO THE EDITOR 

Bond-correlated percolation model and the unusual 
behaviour of supercooled water 

Chin-Kun Hu 
Lash-Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada 
M5S 1Al 

Received 5 April 1983 

Abstract. It is shown that the partition function of an interaction Hamiltonian for the 
hydrogen bonding in water molecules may be expressed as the generating function of a 
bond-correlated percolation model with a bond probability p depending on the hydrogen- 
bond strength and the temperature T. Assuming that the molecules with larger number 
of active bonds have a larger volume per molecule, we may show that, for temperatures 
near but higher than the temperature of maximum bond fluctuations, the isothermal 
compressibility KT and the constant pressure specific heat C,, increase, while the thermal 
expansivity crp becomes more negative, as T decreases. Other unusual behaviour of 
supercooled water can also be explained by this model. 

The interactions between water molecules include van der Waals attractions and 
hydrogen-bond couplings. It is clear that the latter play an important role in the 
properties of water, e.g. the unusual behaviour of supercooled water (see e.g. the 
recent review of Angell (1982)). However, the way that the hydrogen-bond interac- 
tions influence the properties of water is not well understood. Recently Stanley and 
coworkers (Stanley 1979, Stanley and Teixeira 1981, Stanley et a1 1981) made an 
important step in understanding the unusual behaviour of supercooled water. They 
used a polychromatic site-correlated percolation model (PSCPM) to explain the 
anomalous behaviour of (a) the isothermal compressibility KT(T,  Po), (b) the constant 
pressure specific heat C, (T,  Po), and (c) thermal expansivity aP (T, Po) for H 2 0  or D 2 0  
at a supercooled temperature T and atmospheric pressure Po. Their theory is based 
on the following assumptions. ( A l )  The water molecules are located on a lattice G. 
(A2) For each pair of molecules located on nearest-neighbour sites there is a bond 
with active probability p and inactive probability 1 - p .  The active bonds connect the 
water molecules to form a percolating network. (A3) The molecules with a larger 
number of active bonds have larger volume per molecule and (A4) smaller value of 
entropy per molecule. Based on (Al)-(A4), they were able to predict the behaviour 
of supercooled H20  and D20 listed in table 1. All the qualitative predictions of table 
1 are consistent with experiments (Angell (1982), see also reference 3 in Stanley et 
a1 (1981)). 

Although the PSCPM of Stanley et a1 is capable of explaining the unusual behaviour 
of supercooled water, it has some unsatisfactory features. For example, the bond 
probability p of (A2) is not given unambiguously from the microscopic hydrogen-bond 
potential between molecules but is introduced as a phenomenological parameter. 
Stanley et a1 (1981) have also pointed out that ‘among the important (sic) is the 
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Table 1. Summary of the qualitative predictions of the correlated percolation model for 
the behaviour of three static response functions: the isothermal compressibility KT, the 
constant pressure specific heat C, and the thermal expansivity ap. 

- Sign of anomaly + + 
Lower T t t 1 
Increase Po 1 1 t 
Dilute with D 2 0  t t 1 
Dilute with a ‘patch-breaking’ impurity 1 1 t 

creation of an appropriate Hamiltonian that describes simultaneously (i) the interac- 
tions and (ii) the connectivity between water molecules’. In this paper, we propose 
a bond-correlated percolation model of water which satisfies the criterion of a 
desirable theory emphasised by Stanley et a1 (1981) and in which the bond probability 
is related unambiguously to the assumed hydrogen-bond coupling strength between 
molecules. The connection between the bond-correlated percolation model for hydro- 
gen-bond coupling (BCPM-HBC) in water and the interaction Hamiltonian for water 
molecules is a natural extension of our recent work (Hu 1982, 1983a, b, c), which 
relates many spin models to correlated percolation models. In the BCPM-HBC, it is 
also assumed that molecules with larger number of active bonds have larger volume 
per molecule (i.e. (A3) above). However, the assumption A4 in the model of Stanley 
et a1 (1981) follows directly from our theory. Our theory can also predict the unusual 
behaviour of supercooled water listed in table 1. 

For the sake of simplicity, we first establish the connection between a simple 
interaction Hamiltonian for water molecules and a bond-correlated percolation model. 
The more complicated cases will be discussed at the end of the paper. Suppose we 
have water molecules located on a lattice G with N sites (vertices) and E bonds 
(edges), in which each site connects its four nearest neighbours (NN) (i.e. the coordina- 
tion number of G is four) with four bonds. Each lattice site, say i, i = 1, 2 , .  . . , N, 
is occupied by one and only one oxygen of an H20 and the two hydrogen atoms 
covalently bonded with this oxygen can point in any two directions of the four bonds 
emanating from the ith site. Thus at the ith site, there are six possible molecular 
configurations which can be represented by a spin si with six spin components si = 1, 
2 , .  . . , 6. The correspondence between the molecular configurations at a lattice site 
of a square lattice and the spin components is shown in figure 1. In this example, the 
angles between two covalent bonds in states si = 5 and 6 are different from the angles 
in states si = 1-4. In the three-dimensional diamond lattice, the angles between any 
two covalent bonds in all molecular configurations are always the same, 

1 2 3 L 5 6 

Figure 1. The six water molecular configurations on a vertex of a square lattice. The 
oxygen is represented by ‘0’ and the hydrogen by ‘x ’ .  The number below each configur- 
ation represents the spin component corresponding to this configuration. 
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Now we consider the hydrogen-bond interactions between molecules which are 
nearest neighbour to each other. We assign an interaction energy -J for each bond 
which satisfies the following hydrogen-bonding condition (HBC): There is one and 
only one hydrogen atom on each bond. 

The interaction Hamiltonian of the hydrogen-bonding can thus be written as 

where the summation extends over all NN bonds (ij), 1 S i, j S N, gij(si, si) = 1 when 
the bond ( i j )  satisfies the condition HBC and gij(si, si) = 0 when the bond does not 
satisfy the condition HBC, i.e. there are two or no hydrogen atoms on the bond (ij). 
The system of (1) reduces to the ice problem discussed by Lieb and Wu (1972) in 
the limit J/kT+ao, where the molecular configurations which do not satisfy the 
condition HBC are suppressed. 

The partition function for H of (1) is 
6 

Z ( G , K )  = 1 . . . f exp(-H/kT) 
s1=l  s N = l  

which can be rewritten as 

where K = J/kT. Now we expand the product in the last expression of (26) and use 
the subgraphs G' E G to represent the terms in the expansion. In each G',  there are 
e(G') bonds (edges) which are attached by the factor (eK - l)gij(si, si)  in the expansion, 
where 0 s e  (G') s e  ( G )  = E. If a particular bond (ij) is attached, the sites i and j are 
said to be in the same cluster. In general, if two sites can be connected through a 
series of attached bonds, they are said to be in the same cluster. A given G' usually 
contains a large number of independent clusters including isolated sites which do not 
connect with any other sites via attached bonds. For a given G',  we can carry out 
the configuration summation of all molecular states, and in such a summation only 
the terms where each attached bond satisfies the condition HBC have non-zero 
contributions. Thus (26) can be written as 

Z ( G ,  K )  = E pe(G')(l  -p)E-e(G'),Dcexp(KE) 
G ' r G  C 

where 

p = 1 -e-K. 

(3) 

(4) 
The product in (3) extends over all clusters c in G'.  D, is the total number of 
configurations of the molecules in cluster c in which each bond satisfies the condition 
HBC. For isolated clusters, i.e. sites without any attached bonds, D, = 6; for two-site 
clusters D, = 6 x 3 = 18. In principle, such calculations of D, can be extended to more 
and more complicated clusters. We expect that on the average the clusters with a 
larger number of bonds per site have a smaller value of In@,) per site. Thus the 
model defined by (3) has the property (A4) mentioned above for the PSCPM of Stanley 
er a1 (1981). 

Following an assumption of the PSCPM (Stanley and Teixeira 1981, Stanley et a1 
1981), we consider a local quantity, the volume per oxygen atom, oj, j = 0, 1 , .  . . , 4 ,  
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and assume that vi depends on the number of bonds emanating from that atom, with? 

V O G  0 1  c U 3  04. 

The total volume of the subgraph G’ is given by 
4 

V(G’)= u,Nj 
j = O  

where Ni is the number of sites in G’with i attached bonds and NO + NI + NZ + N3 + N4 = 
N. Now suppose there is an external pressure of magnitude Po applied to the system; 
the partition function of (3) must be replaced by 

Za(G, K ,  Po) = C pefG”(1  -p)E-e iG”,Dcexp[-PoV(G‘) ]eKE.  (7 )  

It is clear that Z,(G, K ,  Po) of (7 )  is the generating function of the following 
bond-correlated percolation model for the hydrogen-bond coupling (BCPM-HBC) 
defined on G. 

( P l )  All sites of G are occupied and each bond of G is attached with a bond 
probability p of (4). 

(P2) The overall probability for a subgraph G ‘  is enhanced by a factor D, for each 
cluster c in G ‘  and suppressed by a factor exp(-Povi), 0 G j S 4 ,  for each site with j 
bonds emanating from that site. Because of the extra factors of (P2), the average 
number of attached bonds on each bond of G, p, is not equal to p of (4), but is given 

G’EG C 

by 

= (e(G’)N/E)o. (8) 
In the following, we will still use (Q(G‘))o to denote the mean value of a subgraph- 
dependent quantity Q(G’) per site in the thermodynamic limit N + CO and use Q(G’) 
to denote the mean value of Q(G’) for the whole system. 

Using (7), we can calculate various physical quantities of interest. For example, 
the constant pressure internal energy Up(T, Po),  the constant pressure specific heat 
C,(T, Po), the mean volume per molecule, B(T, Po)(=p-’, p =the  mean global mass 
density), the isothermal compressibility KT(  T, PO), and the thermal expansivity 
a,(T, Po) are given by: 

l a  
N - o s  N ap Up(T, Po) = - lim - - lnZa(G, K ,  Po) = -zJp/(2p), (9) 

Cp(TPo)  = ( a / a 7 W P V ,  Po) = k K 2 p - 2 ( ( ( e ( G ’ ) - e ) 2 ) o - ( l  -p)(e(G‘))o) 

= kK ’ p  -’(((se (G ’))*)o - (1 - P ) (e  (G ’))o), 

N+m N aPo 

a,(T, Po) = a-*(ae/aT),, = - e-’(K/T2P)((V(G’) -V(G’))(e(G’) 

(10) 

(11) 

(12) 

i a  
a(T, Po) = - lim - - lnZ,(G, K ,  PO) = (V(G’))o, 

K T ( T , P o ) =  -C’(%/aPo)T = fi-’((V(G’)- V(G‘))2)o= CI-’((~V(G’))~)O, 

= - B-’(K/ TP)@ V(G’)Se ( G’))o. (13) 
t Some of the signs ‘s’ in ( 5 )  are actually ’<’. 
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Because of the relations of (9, the sign of SV(G’) is expected to be the same as 
Se(G‘) and a,(T,Po)  of (13) is zero or negative. On the other hand, (12) reveals that 
KT is always non-negative. For Po = 0, Z.(G, K ,  PO) of (9) is the same as Z(G,  K )  of 
(2a )  and it is easy to show that C, of (10) is always non-negative. For Po>O, it is 
not obvious whether or not C, of (10) is always non-negative. But in the region of 
large bond fluctuations, the first term of (10) dominates and it is expected that C, > 0. 
Thus in the region of large bond fluctuations, the effect of the hydrogen bonds is 
predicted to ‘correct’ the response functions KT, C, and a, in the way summarised in 
the first line of table 1.  

At high temperatures, p -P 0, there is no significant number of bonds and the bond 
fluctuations ((Se(G’))2)o are approximately zero. At very low temperatures, p + 1, 
most bonds of G are attached and the bond fluctuations are also expected to be very 
small. As the temperature is lowered from high temperatures to very low temperatures, 
we expect that the bond fluctuations will first increase to reach a maximum at a 
temperature T,. From ( 5 ) ,  we expect that the volume fluctuations ( (SV(G‘ ) )2 )~  have 
similar behaviour. The expected behaviour of bond fluctuations and volume fluctu- 
ations should appear in the systems without percolation transitions for T > 0 (e.g. 
one-dimensional model) as well as the systems with percolation transitions. In the 
latter case, T, is just the percolation transition temperature and bond fluctuations and 
volume fluctuations bec ,me infinite at T,. Unless specified otherwise, in the following 
we will always consider systems at temperatures near but higher than T,. From (12), 
(10) and (13), we expect the ‘unusual behaviour’ of KT, C, and a,  listed in the second 
line of table 1, as T is lowered. At a fixed T, if we increase Po, the system favours 
subgraphs with smaller numbers of attached bonds because of (51, and Tp becomes 
smaller; thus we expect the behaviour of KT, C, and a, listed in the third line of table 
1.  If the system of H 2 0  is diluted with D 2 0  or a bond-breaking impurity, we can 
still write down an interaction Hamiltonian for the new system and show that the 
partition function for such an interaction Hamiltonian is the generating function of a 
site-bond correlated percolation model (cf Hu 1983c), in which the sites with D 2 0  
have a larger bond probability to connect with their NN sites and the sites with a 
bond-breaking impurity have a smaller or zero bond probability to connect with their 
NN sites. Thus we expect the behaviour of KT, C, and a, listed in the fourth and fifth 
lines of table 1.  

In the BCPM-HBC, the percolation transition temperature Tp is below temperatures 
of supercooled water, where KT, C, and ap have unusual behaviour. It is reasonable 
to identify Tp with the singular point T, (Ts = 228*3 OK for Po = 1 atm) used to 
characterise the rapid increases of the magnitude of unusual physical quantities (e g. 
KT) for supercooled water (Angell 1982). For a given Po, T, was found to be slightly 
lower than the homogeneous nucleation temperature T H  (Angell 1982). However, 
according to the theory of supercooled water proposed by Stanley et a1 (1981), the 
temperatures for supercooled water are below the percolation transition temperature 
of their percolation model (Stanley 1981), because they judged from results of the 
molecular dynamics simulation (MDS) that the bond probability pB for NN molecules 
is well above the bond percolation threshold. One of the reasons for this difference 
is that our definition of attached bonds for NN pairs of molecules is different from 
that used in the MDS. In the MDS (Geiger er a/  1979), an arbitrary cut-off parameter 
VHB of arbitrary magnitude is introduced. When the mutual energy of interaction 
between two molecules is stronger than V H ~ ,  the two molecules, by definition, have 
a bond between them; otherwise no bond is said to exist. In our approach the bond 
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probability p depends on the interaction energy -J and the temperature T in the 
equation p = 1 - exp(-J/kT). Thus p becomes 1 only when J + 00 or T + 0. As T is 
lowered from high temperatures to approach T,, the behaviour of many physical 
quantities (e.g. ICr) for supercooled water is found to be similar to the behaviour of 
some physical quantities (e.g. magnetic susceptibility) for systems with a second-order 
phase transition as T is lowered to approach the critical temperature T, (Angell 1982). 
Thus the identification of T, in our percolation model with T, of supercooled water 
seems to be better than the alternative approach of Stanley and Teixeira (1981) and 
Stanley et a1 (1981). 

In the above, we have used a simple model to illustrate the mechanism underlying 
the unusual behaviour of supercooled water. This result may be extended to the more 
realistic and complicated model in which the molecules may move in a continuous 
space and have mutual van der Waals and hydrogen-bond interactions depending on 
the separations between molecules and the orientations of molecules. The partition 
function for such a complicated interaction Hamiltonian may still be related to the 
generating function of a correlated percolation model with the bond probability 
between two molecules depending on the molecular separation. In defining the bond 
probability for two molecules, we need not impose a discrete symmetry on the 
continuous interaction potential as in the MDS (Geiger et a1 1979) and the model of 
Stanley et a1 (1981). Instead of using the assumption of (9, we can simply choose 
an appropriate intermolecular potential so that, on the average, the subgraphs G'  
with a larger number of attached bonds have a larger value of total volume. Thus 
many artificial or phenomenological features of the model of Stanley and Teixeira 
(1981) and Stanley et a1 (1981) need not present in our more realistic model mentioned 
above. This model may also be used to explain the unusual behaviour of supercooled 
water and properties of different phases of water. The details of this model will be 
presented later in another paper. 

We would like to acknowledge very useful conversations or discussions with Professors 
J P Valleau, S G Whittington, H E Stanley, F Y Wu, and Dr S L Carnie on the subject 
of this paper or their own work. The work was supported by the Natural Sciences 
and Engineering Research Council of Canada. 
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